Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(3): 1068-1083, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38406998

RESUMEN

Chromatin configuration is critical for establishing tissue identity and changes substantially during tissue identity transitions. The crucial scientific and agricultural technology of in vitro tissue culture exploits callus formation from diverse tissue explants and tissue regeneration via de novo organogenesis. We investigated the dynamic changes in H3ac and H3K4me3 histone modifications during leaf-to-callus transition in Arabidopsis thaliana. We analyzed changes in the global distribution of H3ac and H3K4me3 during the leaf-to-callus transition, focusing on transcriptionally active regions in calli relative to leaf explants, defined by increased accumulation of both H3ac and H3K4me3. Peptide signaling was particularly activated during callus formation; the peptide hormones RGF3, RGF8, PIP1 and PIPL3 were upregulated, promoting callus proliferation and conferring competence for de novo shoot organogenesis. The corresponding peptide receptors were also implicated in peptide-regulated callus proliferation and regeneration capacity. The effect of peptide hormones in plant regeneration is likely at least partly conserved in crop plants. Our results indicate that chromatin-dependent regulation of peptide hormone production not only stimulates callus proliferation but also establishes pluripotency, improving the overall efficiency of two-step regeneration in plant systems.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hormonas Peptídicas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Código de Histonas , Cromatina , Hojas de la Planta/fisiología , Regulación de la Expresión Génica de las Plantas
2.
Physiol Plant ; 176(1): e14155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38342490

RESUMEN

Leucine-rich repeat receptor kinases (LRR-RKs) play a pivotal role in diverse aspects of growth, development, and immunity in plants by sensing extracellular signals. Typically, LRR-RKs are activated through the ligand-induced interaction with a SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) coreceptor, triggering downstream signaling. ROOT MERISTEM GROWTH FACTOR1 (RGF1) INSENSITIVEs (RGIs) LRR-RLK receptors promote primary root meristem activity while inhibiting lateral root (LR) development in response to RGF peptide. In this study, we employed rapamycin-induced dimerization (RiD) and BAK1-INTERACTING RECEPTOR-LIKE KINASE3 (BIR3) chimera approaches to explore the gain-of-function of RGI1, RGI4, and RGI5. Rapamycin induced the association of cytosolic kinase domains (CKDs) of RGI1 and the BAK1 coreceptor, activating both mitogen-activated protein kinase 3 (MPK3) and MPK6. Rapamycin significantly inhibited LR formation in RiD-RGI1/RGI4/RGI5-BAK1 plants. Using transgenic Arabidopsis expressing RGI1CKD fused to the BIR3-LRR chimera under estradiol control, we observed a substantial reduction in LR density upon ß-estradiol treatment. Additionally, we identified a decrease in root gravitropism in BIR3 chimera plants. In contrast, RiD-RGI/BAK1 plants did not exhibit defects in root gravitropism, implying the importance of combinatorial interactions between RGIs and SERK coreceptors in the inhibition of root gravitropism. Constitutive activation of RGIs with BAK1 in RiD-RGI/BAK1 plants by rapamycin treatment resulted in the inhibition of primary root growth, resembling the inhibitory effects observed with high concentrations of phytohormones on primary root elongation. Our findings highlight that the interactions between CKDs of RGIs and BAK1, constitutively induced by rapamycin or BIR3 chimera, efficiently control LR development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/farmacología , Proteínas de Arabidopsis/metabolismo , Dimerización , Plantas/metabolismo , Estradiol/metabolismo , Estradiol/farmacología
3.
Plant Signal Behav ; 18(1): 2260638, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37737147

RESUMEN

Leucine-rich repeat-receptor kinases (LRR-RKs) perceive various endogenous peptide hormones that control plant growth and development. However, the majority of corresponding ligands and their direct ligand-binding receptors have not been identified yet. A recent study demonstrated that three LRR-RK PLANT PEPTIDE CONTAINING SULFATED TYROSINE RECEPTORS (PSYRs) act as ligand-receptors of the PSY family peptides that mediate the trade-off between the optimal plant growth and stress tolerance responses. The genetic, biochemical, and transcriptome analyses suggested that PSYR1, PSYR2, and PSYR3 function as negative regulators of plant growth in the absence of PSY peptides and induce stress tolerance responses, whereas the PSY family peptides repress PSYR signaling, allowing plant growth. This trade-off mechanism between plant growth and stress responses mediated by the PSY-PSYR signaling module allows plants to survive under ever changing environmental stresses.


Asunto(s)
Perfilación de la Expresión Génica , Desarrollo de la Planta , Ligandos , Dominios Proteicos , Transducción de Señal
4.
Plant Signal Behav ; 18(1): 2229957, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37382066

RESUMEN

ROOT MERISTEM GROWTH FACTOR1 (RGF1) and its receptors RGF1 INSENSITIVEs (RGIs), a group of leucine-rich repeat receptor kinases, promote primary root meristem activity via a mitogen-activated protein kinase (MPK) signaling cascade and control root gravitropism in Arabidopsis. Genetic analyses and in vitro binding assays have indicated that among five RGIs identified in Arabidopsis, RGI1, RGI2, and RGI3 recognize RGF1 peptides. However, it remains unclear whether the RGF1 peptide is redundantly recognized by these RGIs or mainly by a single RGI in the regulation of primary root meristem activity. In the present study, we analyzed root meristem growth of the rgi1, rgi2, and rgi3 single mutants in response to RGF1 treatment and observed a significantly decreased sensitivity in meristem growth of rgi1 and complete insensitivity in rgi1 rgi2 rgi3 triple mutant compared with the wild type but not in the rgi1 and rgi2 single mutants. We also observed that both root gravitropism and meristem growth in the BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE 1 (bak1) single mutant were insensitive to RGF1 peptide treatment, whereas other serk mutants, such as serk1, serk2, and serk4, were fully sensitive to RGF1 peptide like the wild type. These mutant analyses suggest that RGI1-BAK1 pair acts as the main receptor-coreceptor pair for regulating primary root gravitropism and meristem activity in response to RGF1 peptide in Arabidopsis.


Asunto(s)
Arabidopsis , Péptidos , Raíces de Plantas , Raíces de Plantas/fisiología , Péptidos/metabolismo , Gravitropismo , Transducción de Señal
5.
Planta ; 258(2): 26, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37354348

RESUMEN

MAIN CONCLUSION: LBD18 and IAA14 antagonistically interact with ARF7 through the electrostatic faces in the ARF7PB1 domain, modulating ARF7 transcriptional activity. Auxin Response Factor 7 (ARF7)/ARF19 control lateral root development by directly activating Lateral Organ Boundaries Domain 16 (LBD16)/LBD18 genes in Arabidopsis. LBD18 upregulates ARF19 expression by binding to the ARF19 promoter. It also interacts with ARF7 through the Phox and Bem1 (PB1) domain to enhance the ARF7 transcriptional activity, forming a dual mode of positive feedback loop. LBD18 competes with the repressor indole-3-acetic acid 14 (IAA14) for ARF7 binding through the PB1 domain. In this study, we examined the molecular determinant of the ARF7 PB1 domain for interacting with LBD18 and showed that the electronic faces in the ARF7 PB1 domain are critical for interacting with LBD18 and IAA14/17. We used a luminescence complementation imaging assay to determine protein-protein interactions. The results showed that mutation of the invariant lysine residue and the OPCA motif in the PB1 domain in ARF7 significantly reduces the protein interaction between ARF7 and LBD18. Transient gene expression assays with Arabidopsis protoplasts showed that IAA14 suppressed transcription-enhancing activity of LBD18 on the LUC reporter gene fused to the ARF19 promoter harboring an auxin response element, but mutation of the invariant lysine residue and OPCA motif in the PB1 domain of IAA14 reduced the repression capability of IAA14 for transcription-enhancing activity of LBD18. We further showed that the same mutation in the PB1 domain of IAA14 reduces its repression capability, thereby increasing the LUC activity induced by both ARF7 and LBD18 compared with IAA14. These results suggest that LBD18 competes with IAA14 for ARF7 binding via the electrostatic faces of the ARF7 PB1 domain to modulate ARF7 transcriptional activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factor VII/genética , Factor VII/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Lisina/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo
6.
Trends Plant Sci ; 28(8): 924-940, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37045740

RESUMEN

Plants constantly face fluctuating ambient temperatures and must adapt to survive under stressful conditions. Temperature affects many aspects of plant growth and development through a complex network of transcriptional responses. Although temperature sensing is a crucial primary step in initiating transcriptional responses via Ca2+ and/or reactive oxygen species signaling, an understanding of how plants perceive temperature has remained elusive. However, recent studies have yielded breakthroughs in our understanding of temperature sensors and thermosensation mechanisms. We review recent findings on potential temperature sensors and emerging thermosensation mechanisms, including biomolecular condensate formation through phase separation in plants. We also compare the temperature perception mechanisms of plants with those of other organisms to provide insights into understanding temperature sensing by plants.


Asunto(s)
Desarrollo de la Planta , Plantas , Temperatura , Plantas/genética , Transducción de Señal , Percepción
7.
J Exp Bot ; 74(5): 1475-1488, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516421

RESUMEN

ROOT MERISTEM GROWTH FACTOR1 (RGF1) and its receptors RGF1 INSENSITIVEs (RGIs) regulate primary root meristem activity via a mitogen-activated protein kinase (MPK) signaling cascade in Arabidopsis. However, it is unknown how RGF1 regulates lateral root (LR) development. Here, we show that the RGF1-RGI1 peptide-receptor pair negatively regulates LR development via activation of PUCHI encoding AP2/EREBP. Exogenous RGF1 peptides inhibited LR development of the wild type. However, the rgi1 mutants were partially or fully insensitive to RGF1 during LR development, whereas four other rgi single mutants, namely rgi2, rgi3, rgi4, and rgi5, were sensitive to RGF1 in inhibiting LR formation. Consistent with this, the red fluorescent protein (RFP) signals driven by the RGF1 promoter were detected at stage I and the following stages, overlapping with RGI1 expression. PUCHI expression was significantly up-regulated by RGF1 but completely inhibited in rgi1. LR development of puchi1-1 was insensitive to RGF1. PUCHI expression driven by the RGI1 promoter reduced LR density in both the wild type and rgi1,2,3. Further, mpk6, but not mpk3, displayed significantly down-regulated PUCHI expression and insensitive LR development in response to RGF1. Collectively, these results suggest that the RGF1-RGI1 module negatively regulates LR development by activating PUCHI expression via MPK6.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Péptidos/metabolismo , Raíces de Plantas/metabolismo , Receptores de Péptidos/metabolismo , Factores de Transcripción/metabolismo
8.
Cell Rep ; 37(6): 109980, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758306

RESUMEN

Plants exhibit high regenerative capacity, which is controlled by various genetic factors. Here, we report that ARABIDOPSIS TRITHORAX-RELATED 2 (ATXR2) controls de novo shoot organogenesis by regulating auxin-cytokinin interaction. The auxin-inducible ATXR2 Trithorax Group (TrxG) protein temporally interacts with the cytokinin-responsive type-B ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) at early stages of shoot regeneration. The ATXR2-ARR1 complex binds to and deposits the H3K36me3 mark in the promoters of a subset of type-A ARR genes, ARR5 and ARR7, thus activating their expression. Consequently, the ATXR2/ARR1-type-A ARR module transiently represses cytokinin signaling and thereby de novo shoot regeneration. The atxr2-1 mutant calli exhibit enhanced shoot regeneration with low expression of ARR5 and ARR7, which ultimately upregulates WUSCHEL (WUS) expression. Thus, ATXR2 regulates cytokinin signaling and prevents premature WUS activation to ensure proper cell fate transition, and the auxin-cytokinin interaction underlies the initial specification of shoot meristem in callus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Organogénesis , Brotes de la Planta/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Regiones Promotoras Genéticas , Regeneración , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Front Plant Sci ; 12: 704490, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349774

RESUMEN

As sessile organisms, plants are exposed to constantly changing environments that are often stressful for their growth and development. To cope with these stresses, plants have evolved complex and sophisticated stress-responsive signaling pathways regulating the expression of transcription factors and biosynthesis of osmolytes that confer tolerance to plants. Signaling peptides acting like phytohormones control various aspects of plant growth and development via cell-cell communication networks. These peptides are typically recognized by membrane-embedded receptor-like kinases, inducing activation of cellular signaling to control plant growth and development. Recent studies have revealed that several signaling peptides play important roles in plant responses to abiotic stress. In this mini review, we provide recent findings on the roles and signaling pathways of peptides that are involved in coordinating plant responses to abiotic stresses, such as dehydration, high salinity, reactive oxygen species, and heat. We also discuss recent developments in signaling peptides that play a role in plant adaptation responses to nutrient deficiency stress, focusing on nitrogen and phosphate deficiency responses.

10.
Mol Plant ; 14(8): 1379-1390, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-33964457

RESUMEN

Membrane-localized leucine-rich repeat receptor kinases (LRR-RKs) sense diverse extracellular signals, and coordinate and specify cellular functions in plants. However, functional understanding and identification of the cellular signaling of most LRR-RKs remain a major challenge owing to their genetic redundancy, the lack of ligand information, and subtle phenotypes of LRR-RK overexpression. Here, we report an engineered rapamycin-inducible dimerization (RiD) receptor system that triggers a receptor-specific LRR-RK signaling independent of their cognate ligands or endogenous receptors. Using the RiD-receptors, we demonstrated that the rapamycin-mediated association of chimeric cytosolic kinase domains from the BRI1/BAK1 receptor/co-receptor, but not the BRI1/BRI1 or BAK1/BAK1 homodimer, is sufficient to activate downstream brassinosteroid signaling and physiological responses. Furthermore, we showed that the engineered RiD-FLS2/BAK1 could activate flagellin-22-mediated immune signaling and responses. Using the RiD system, we also identified the potential function of an unknown orphan receptor in immune signaling and revealed the differential activities of SERK co-receptors of LRR-RKs. Our results indicate that the RiD method can serve as a synthetic biology tool for precise temporal manipulation of LRR-RK signaling and for understanding LRR-RK biology.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Dimerización , Sirolimus/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ligandos , Fosforilación , Plantas Modificadas Genéticamente/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
11.
Trends Plant Sci ; 26(8): 822-835, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33715959

RESUMEN

Plant signaling peptides are involved in cell-cell communication networks and coordinate a wide range of plant growth and developmental processes. Signaling peptides generally bind to receptor-like kinases, inducing their dimerization with co-receptors for signaling activation to trigger cellular signaling and biological responses. Fertilization is an important life event in flowering plants, involving precise control of cell-cell communications between male and female tissues. Peptide-receptor-like kinase-mediated signaling plays an important role in male-female interactions for successful fertilization in flowering plants. Here, we describe the recent findings on the functions and signaling pathways of peptides and receptors involved in plant reproduction processes including pollen germination, pollen tube growth, pollen tube guidance to the embryo sac, and sperm cell reception in female tissues.


Asunto(s)
Tubo Polínico , Transducción de Señal , Genes de Plantas , Péptidos , Polinización , Reproducción
12.
J Exp Bot ; 72(8): 2889-2902, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33595615

RESUMEN

Roots provide the plant with water and nutrients and anchor it in a substrate. Root development is controlled by plant hormones and various sets of transcription factors. Recently, various small peptides and their cognate receptors have been identified as controlling root development. Small peptides bind to membrane-localized receptor-like kinases, inducing their dimerization with co-receptor proteins for signaling activation and giving rise to cellular signaling outputs. Small peptides function as local and long-distance signaling molecules involved in cell-to-cell communication networks, coordinating root development. In this review, we survey recent advances in the peptide ligand-mediated signaling pathways involved in the control of root development in Arabidopsis. We describe the interconnection between peptide signaling and conventional phytohormone signaling. Additionally, we discuss the diversity of identified peptide-receptor interactions during plant root development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Péptidos/metabolismo , Raíces de Plantas/metabolismo , Transducción de Señal
13.
Front Plant Sci ; 11: 895, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719695

RESUMEN

Drought is a critical environmental stress that limits growth and development of plants and reduces crop productivity. The aerial part of land plants is covered with cuticular waxes to minimize water loss. To understand the regulatory mechanisms underlying cuticular wax biosynthesis in Arabidopsis under drought stress conditions, we characterized the role of an AP2/DREB type transcription factor, RAP2.4. RAP2.4 expression was detected in one-week-old seedlings and rosette leaves, stems, stem epidermis, cauline leaves, buds, flowers, and siliques of 6-week-old Arabidopsis. The levels of RAP2.4 transcripts increased with treatments of abscisic acid (ABA), mannitol, NaCl, and drought stress. Under drought, total wax loads decreased by approximately 11% and 10%, and in particular, the levels of alkanes, which are a major wax component, decreased by approximately 11% and 12% in rap2.4-1 and rap2.4-2 leaves, respectively, compared with wild type (WT) leaves. Moreover, the transcript levels of cuticular wax biosynthetic genes, KCS2 and CER1, decreased by approximately 15-23% and 32-40% in rap2.4-1 and rap2.4-2 leaves, respectively, relative to WT 4 h after drought treatment, but increased by 2- to 12-fold and 3- to 70-fold, respectively, in three independent RAP2.4 OX leaves relative to WT. Epicuticular wax crystals were observed on the leaves of RAP2.4 OX plants, but not on the leaves of WT. Total wax loads increased by 1.5- to 3.3-fold in leaves of RAP2.4 OX plants relative to WT. Cuticular transpiration and chlorophyll leaching occurred slowly in the leaves of RAP2.4 OX plants relative to WT. Transcriptional activation assay in tobacco protoplasts showed that RAP2.4 activates the expression of KCS2 and CER1 through the involvement of the consensus CCGAC or GCC motifs present in the KCS2 and CER1 promoter regions. Overall, our results revealed that RAP2.4 is a transcription factor that activates cuticular wax biosynthesis in Arabidopsis leaves under drought stress conditions.

14.
Nat Commun ; 11(1): 1053, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103019

RESUMEN

In plants, an elevation in ambient temperature induces adaptive morphological changes including elongated hypocotyls, which is predominantly regulated by a bHLH transcription factor, PIF4. Although PIF4 is expressed in all aerial tissues including the epidermis, mesophyll, and vascular bundle, its tissue-specific functions in thermomorphogenesis are not known. Here, we show that epidermis-specific expression of PIF4 induces constitutive long hypocotyls, while vasculature-specific expression of PIF4 has no effect on hypocotyl growth. RNA-Seq and qRT-PCR analyses reveal that auxin-responsive genes and growth-related genes are highly activated by epidermal, but not by vascular, PIF4. Additionally, inactivation of epidermal PIF4 or auxin signaling, and overexpression of epidermal phyB suppresses thermoresponsive growth, indicating that epidermal PIF4-auxin pathways are essential for the temperature responses. Further, we show that high temperatures increase both epidermal PIF4 transcription and the epidermal PIF4 DNA-binding ability. Taken together, our study demonstrates that the epidermis regulates thermoresponsive growth through the phyB-PIF4-auxin pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ácidos Indolacéticos/metabolismo , Fitocromo B/metabolismo , Epidermis de la Planta/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Calor , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal/fisiología
15.
BMC Plant Biol ; 19(1): 46, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30704405

RESUMEN

BACKGROUND: Adventitious root (AR) formation is a complex genetic trait, which is controlled by various endogenous and environmental cues. Auxin is known to play a central role in AR formation; however, the mechanisms underlying this role are not well understood. RESULTS: In this study, we showed that a previously identified auxin signaling module, AUXIN RESPONSE FACTOR(ARF)7/ARF19-LATERAL ORGAN BOUNDARIES DOMAIN(LBD)16/LBD18 via AUXIN1(AUX1)/LIKE-AUXIN3 (LAX3) auxin influx carriers, which plays important roles in lateral root formation, is involved in AR formation in Arabidopsis. In aux1, lax3, arf7, arf19, lbd16 and lbd18 single mutants, we observed reduced numbers of ARs than in the wild type. Double and triple mutants exhibited an additional decrease in AR numbers compared with the corresponding single or double mutants, respectively, and the aux1 lax3 lbd16 lbd18 quadruple mutant was devoid of ARs. Expression of LBD16 or LBD18 under their own promoters in lbd16 or lbd18 mutants rescued the reduced number of ARs to wild-type levels. LBD16 or LBD18 fused to a dominant SRDX repressor suppressed promoter activity of the cell cycle gene, Cyclin-Dependent Kinase(CDK)A1;1, to some extent. Expression of LBD16 or LBD18 was significantly reduced in arf7 and arf19 mutants during AR formation in a light-dependent manner, but not in arf6 and arf8. GUS expression analysis of promoter-GUS reporter transgenic lines revealed overlapping expression patterns for LBD16, LBD18, ARF7, ARF19 and LAX3 in AR primordia. CONCLUSION: These results suggest that the ARF7/ARF19-LBD16/LBD18 transcriptional module via the AUX1/LAX3 auxin influx carriers plays an important role in AR formation in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo
16.
Planta ; 249(4): 1251-1258, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30627888

RESUMEN

MAIN CONCLUSION: Lateral Organ Boundaries Domain 13 (LBD13), which is expressed in emerged lateral roots and encodes a transcriptional activator, plays an important role in lateral root formation in Arabidopsis. Lateral roots (LRs) are major determinants of root system architecture, contributing to the survival strategies of plants. Members of the LBD gene family encode plant-specific transcription factors that play key roles in plant organ development. Several LBD genes, such as LBD14, 16, 18, 29, and 33, have been shown to play important roles in regulating LR development in Arabidopsis. In the present study, we show that LBD13 is expressed in emerged LRs and LR meristems of elongated LRs and regulates LR formation in Arabidopsis. Transient gene expression assays with Arabidopsis protoplasts showed that LBD13 is localized to the nucleus and harbors transcription-activating potential. Knock-down of LBD13 expression by RNA interference resulted in reduced LR formation, whereas overexpression of LBD13 enhanced LR formation in transgenic Arabidopsis. Analysis of ß-glucuronidase (GUS) expression under the control of the LBD13 promoter showed that GUS staining was detected in LRs emerged from the primary root, but not in LR primordia. Moreover, both the distribution of LR primordium number and developmental kinetics of LR primordia were not affected either by knock-down or by overexpression of LBD13. Taken together, these results suggest that LBD13 is a nuclear-localized transcriptional activator and controls LR formation during or after LR emergence.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Genes de Plantas/genética , Proteínas Nucleares/fisiología , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Proteínas Nucleares/genética , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
17.
Plant Signal Behav ; 13(8): e1507405, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30125143

RESUMEN

The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family encode plant-specific transcription factors that regulate various aspects of plant growth and development. Arabidopsis genome has 42 LBD genes. Several LBD genes, such as LBD16, -18, -29, and -33, have been shown to function in lateral root (LR) development via auxin signaling. Although abscisic acid (ABA) is a well-known antistress plant hormone regulating various plant developmental processes, it also plays a role in LR growth regulation. Our recent study showed that LBD14 expression is downregulated by ABA during the entire steps of LR development. The RNAi-induced downregulation and overexpression of LBD14 indicated that LBD14 promotes LR formation. LBD14RNAi enhanced the ABA-induced suppression of LR density compared with the wild type, suggesting that LBD14 is involved in the ABA-mediated control of LR formation. Our study provides an insight into the signaling mechanism of developmental plasticity whereby ABA controls LR branching via LBD14 downregulation under abiotic stress conditions.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
Plant J ; 95(2): 233-251, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29681137

RESUMEN

A hierarchy of transcriptional regulators controlling lateral root formation in Arabidopsis thaliana has been identified, including the AUXIN RESPONSE FACTOR 7 (ARF7)/ARF19-LATERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16)/LBD18 transcriptional network; however, their feedback regulation mechanisms are not known. Here we show that LBD18 controls ARF activity using the dual mode of a positive feedback loop. We showed that ARF7 and ARF19 directly bind AuxRE in the LBD18 promoter. A variety of molecular and biochemical experiments demonstrated that LBD18 binds a specific DNA motif in the ARF19 promoter to regulate its expression in vivo as well as in vitro. LBD18 interacts with ARFs including ARF7 and ARF19 via the Phox and Bem1 domain of ARF to enhance the transcriptional activity of ARF7 on AuxRE, and competes with auxin/indole-3-acetic acid (IAA) repressors for ARF binding, overriding the negative feedback loop exerted by Aux/IAA repressors. Taken together, these results show that LBD18 and ARFs form a double positive feedback loop, and that LBD18 uses the dual mode of a positive feedback loop by binding directly to the ARF19 promoter and through the protein-protein interactions with ARF7 and ARF19. This novel mechanism of feedback loops may constitute a robust feedback mechanism that ensures continued lateral root growth in response to auxin in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Retroalimentación Fisiológica , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética
19.
Trends Plant Sci ; 23(4): 337-351, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29366684

RESUMEN

Small peptides mediate cell-cell communication to coordinate a variety of plant developmental processes. Signaling peptides specifically bind to the extracellular domains of receptors that belong to the receptor-like kinase family, and the peptide-receptor interaction activates a range of biochemical and physiological processes. The plant root is crucial for the anchorage of plants in soil as well as for the uptake of water and nutrients. Over recent years great progress has been made in the identification of receptors, structural analysis of peptide-receptor pairs, and characterization of their signaling pathways during plant root development. We review here recent advances in the elucidation of the functions and molecular mechanisms of signaling peptides, the peptide-receptor pairs that activate signal initiation, and their signaling pathways during root development.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Señales de Clasificación de Proteína/fisiología , Receptores de Superficie Celular/fisiología , Transducción de Señal , Raíces de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología
20.
Plant Signal Behav ; 13(1): e1411450, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29227192

RESUMEN

The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) gene family members encode a class of plant-specific transcription factors that play important roles in many different aspects of plant growth and development. The LBD proteins contain a conserved LOB domain harboring a Leu zipper-like coiled-coil motif, which has been predicted to mediate protein-protein interactions among the LBD family members. Dimerization of transcription factors is crucial for the modulation of their DNA-binding affinity, specificity, and diversity, contributing to the transcriptional regulation of distinct cellular and biological responses. Our various molecular and biochemical experiments with genetic approaches on LBD16 and LBD18, which are known to control lateral root development in Arabidopsis, demonstrated that the conserved Leu or Val residues in the coiled-coil motifs of these transcription factors are critical for their dimerization as well as the transcriptional regulation to display their biological functions during lateral root formation. We further showed that beside the coiled-coil motif, the carboxyl-terminal region in LBD18 acts as an additional dimerization domain. These findings provide a molecular framework for the homo- and hetero-dimerization of the LBD family proteins for displaying their distinct and diverse biological functions in plants.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Multimerización de Proteína , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...